磁気共鳴赤外線散乱法 (MRE) は振動を加えながら描像することで対象内部を伝播する振動波を wave image として可視化し、その波長から組織の弾性率を求める技術である。MRE は通常の magnetic resonance imaging (MRI) 描像と異なり、振動を加えながら描像を行うため、その精度評価には加振精度の評価、弾性率算出精度の評価等を行う必要がある。現在、日本磁気共鳴医学会では MRE 精度評価用の phantom を示しているが、MRE 精度評価のためには phantom のみでなく、専用の加振パッドやそれに適した描像条件を同時に開発する必要がある。MRE 精度評価の現状は、加振パッド固定の再現性、echo planar imaging (EPI) 系のシーケンスによる画像歪み、伝播波の均一性という点で改善すべき課題がある。本研究ではこれらの問題を改善するため、それぞれについて検討を行った。

再現性の良い加振を行うには加振パッドと phantom を安定して固定する必要がある。本研究では phantom の上に加振パッドを配置する方法よりも、加振パッドの上に phantom を乘せて固定する方法の方が振動パターンおよび振動強度の再現性が高いことが示唆された。

しかし、現在臨床で用いられている肝臓用の加振パッド (passive driver) の形状では、安定して phantom を上に配置することが困難である。そこで我々は passive driver と phantom を精度よく固定するための補助具を作製した。computed tomography (CT) によって得た passive driver のポリュームデータを元に設計した補助具は非常に高い精度で passive driver を固定することが出来た。これを用いることで肝臓用の passive driver でも簡便に再現性の高い MRE 精度評価を行うことが可能となる。

EPI 系のシーケンスによって画像歪みが生じると wave image の波長変化を引き起こし、得られる弾性率に影響を与える。歪みは位相エンコード方向に現れるため、波の伝播方向と歪みの方向が一致しないようにエンコード方向を設定することで歪みが弾性率に与える影響を軽減することが出来た。一方で Quantitative Imaging Biomarker Alliance (QIBA) が発表している phantom MRE の条件では同心円状の波が phantom の外側から中心へと伝播する wave image が得られる。このパターンの波では波が全方
向に進行するため、波の進行方向と歪みの方向は必ず部分的に一致してしまう。よって歪みが生じる可能性のある条件では一方向に波が伝播するパターンが望ましい。

加振パッドによって phantom に振動を加えると、加振パッドの直上で波が可視化されない領域(blind zone)が現れる。Blind zone は弾性率算出の際に障害となる。そこで我々は blind zone の現れない wave image を得るために 2 つの振動部によって逆位相の振動を加える方法を開発した。2 つの振動部の中間を切る断面において断面に垂直な motion encoding gradient を印加することで blind zone のない波が一方向に伝播する wave image を得ることが出来た。ここで作製した加振パッドを用いることで、phantom に対して一方向に伝わる波を再現性良く発生させることが可能となる。よって本法はより正確な MRE 精度評価を可能とすると考えられる。